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Outline

Where and when should we use machine learning?
• Why ML can be the most optimal answer but not the best answer

• Hurdles to the successful implementation of ML

Examples of machine learning applied to exploration and mining
• Searching for surface signatures in regional datasets 

• Creating data-driven mineral domains using clustering

• Classifying Corescan mineral textures

• Quantifying the relationship between mineral associations and Au
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CLUSTERING

CLASSIFICATION

REGRESSION

MACHINE LEARNING

UNSUPERVISED 
LEARNING

SUPERVISED LEARNING

Unlabeled data
Learning only uses input data

Labeled data
Learning uses input & output data

Grouping into ‘natural’ domains

Prediction of classes

Prediction of a value 

Systems that iteratively learn from 
data to find hidden insights and 

structure without being explicitly 
programmed where and how to 

look
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Getting it right at the start of a project

Asking the right question

Finding the appropriate data

Pre-processing inputs

Machine Learning algorithm

80% of the work involved is 
getting these parts right!

The algorithm of used in this phase 
and the tuning of hyperparameters 
doesn’t matter if the above steps 

aren’t addressed first.
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Example 1
Searching for surface signatures in the Pilbara 

using supervised learning
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Searching for surface signatures in the Pilbara using 
supervised learning

Key Questions:

• Can we find additional non-mapped 
exposures of economic iron-bearing 
lithologies either in outcrop or 
regolith?

• Can we find areas of the map that 
have potentially been misclassified?

• Where is the mapping in 
agreement/disagreement with the 
data?
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• Total model area 262,704 km²
• 300,000,000 data points
• 11-15 layers of data

• 10 Landsat 8 OLI scenes
• SRTM
• Regional radiometrics
• Regional aeromagnetic data

Searching for surface signatures in the Pilbara using 
supervised learning
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Data workflow

Aeromagnetic 
data

Radiometrics Landsat 8 OLI SRTM

RTP

High-Pass

U Bands 2,3,4,5,6,7

Image merge PIF

PCA 1, 2 & 3

Elevation

Curvature

Slope

Roughness

Vertical Derivative

Sample to regular

points

ML classification model (XGBoost, Random Forest)

Th

K
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Cloud computing for large models

AWS EC2 Instance type
m4.4x large X 4

• 16 CPU
• 64 G RAM

Total run time
• 52 hours 

Total costs 
• 1.65 US per hour
• $343 US

This workflow requires us to process and analyse hundreds of 40-300 
million point models. To run these models we employed 4 EC2 
instances.

Instances are simple to spin up and can run any software (even dongle-
based licences)

• Pre-processing
• Sampling of rasters

• Machine learning classifier
• Variable importance
• Recombining data
• Raster creation

m4.4x large

m4.4x large

m4.4x large

m4.4x large
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Example outputs

Probability grid for the Brockman Formation coloured with probability ranging from 0.95 (blue) to 1 (red) overlain with mapped extent (black)

The probability values 
in each pixel are the 
average of hundreds 
of Random Forest and 
XGBoost models that 
were made with 
different parameters 
and training sizes. 

Probability raster output
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Determining which variables are important

Recursive feature elimination

Brockman versus all 
other iron-bearing units

RFE analysis involves building the 
model recursively, each time 
looking at model performance, 
iteratively leaving out the poorest 
performing variables.

RFE helps understand which 
variables may be redundant or 
irrelevant.

RFE also informs on the optimal 
order in which variables should be 
used. 
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>90% probability along 
strike of mapped lithology

Coherent body similar 
morphology to nearby 
mapped unit
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There are several regions that 
appear to be in relatively close 
proximity to mapped lithology, and 
show similar linear morphology, 
some appearing to be directly along 
strike of mapped lithology.

To the west there are a few 
more ovoid shaped regions that 
are more distant to mapped 
lithology.
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Example 2
Prediction of rock hardness from Corescan 

mineralogy
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Prediction of rock strength parameters
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The above graph shows a comparison between 7 different regression models (coloured lines) trained on Corescan 
mineralogy to predict rock hardness (grey line). 

Corescan data may be used to predict datasets that are more expensive or suffer from long lead times.
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Prediction of rock strength parameters

Depth (m)

Good correlation with 
model prediction and 
measured data

Extension of hardness 
parameter to areas where no 
measurements were taken

Predicted Measured

If a robust relationship between Corescan and other datasets can be identified, they can be predicted 
across areas where no measurements were taken. 
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Example 3
Data-driven domaining of Corescan mineral data 

using unsupervised learning
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aspectral_pxabiotite_pxa carbonate_pxa chlorite_pxa epidote_pxa garnet_pxa

0.045 0 0.125 0.404 0.391 0.015

0.089 0.001 0.095 0.392 0.138 0.007

0.083 0.002 0.155 0.409 0.278 0.017

0.022 0.018 0.215 0.403 0.452 0.059

0.002 0.002 0.203 0.536 0.56 0.036

0.027 0.004 0.263 0.516 0.3 0.037

0.036 0 0.046 0.113 0.761 0.004

0.399 0 0 0 0 0

Spectra at 500µm

Mineral presence images

Mineral 
proportion

Plotting of similarity metric in low 
dimensional space for clustering

Clusters are smoothed to 
desired level of detail

25cm 1m 4m

5
0

0
m

Upscaling and domaining Corescan data

Mineral association
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Example 4
Classifying Corescan mineral textures  



www.solvegeosolutions.com

By looking at the statistics of how pixels are connected and 
spatially distributed, it is possible to extract some statistical 
measures of mineral texture from the Corescan mineral 
maps.

These statistics can then be used to classify mineral texture 
in both supervised classification, and clustering 
applications.

On the next slide we show an example of how these 
texture parameters can be combined with the abundance 
data to produce texture clusters downhole.

Example individual mineral images showing the 
diversity of texture collected by the Corescan system.

Extraction of texture parameters from Corescan mineralogy maps



www.solvegeosolutions.com

Extraction of texture parameters from Corescan mineralogy maps

Mineral Abundance
GLCM statistics

Mineral Correlation

Supervised texture 
classification

Unsupervised 
texture clustering

The algorithm cycles 
through each pixel 
and looks at how it is 
connected to the 
pixels surrounding it 
in several directions.

Individual 
Mineral Maps

Mineral Complexity

Texture direction/strength

Describes how connected the 
mineral texture is. Veins have high 
correlation values as they have pixels 
touching in a particular direction.

Describes the complexity of the 
mineral texture. Disseminated or 
matrix textures are more complicated 
than massive textures.

Mineral abundance

Describes how dominant a 
particular texture direction is, and 
returns the direction with respect to 
core axis

Input data

Output variables

Counts pixels where mineral is 
present.

Texture parameters can 
be used as inputs into 
data driven clustering

Textures of interest can 
be identified by the 
geologist and be fed 
into a supervised 
classification model 
(shown next)

Texture 
algorithm
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Contrast/-Energy (complexity)
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Vein

Matrix Strong

Matrix

Disseminated-Strong

Weakly Disseminated

Blebby

Coarse Blebby

Semi-Massive
Massive

Disseminated

Texture Classes 

Texture can be included in a supervised classification 
by building a small training set of images with well 
defined textures. The model is then able to predict on 
the remaining data with a probability of belonging to 
each predefined texture class.
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The above image contains elements 
of several different end member 
textures including Vein (56%) and 
Coarse Blebby (31%), with smaller 
amounts of Semi-massive and 
Matrix.

The RF model allows for the image 
to display probabilities for several 
textural classes.

Example of outputs from the supervised texture classification.
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As most images contain more 
than one texture, giving an 
image a single class is 
simplistic and potentially 
misleading. The machine 
learning classification allows 
the image belong to several 
different texture classes. 

This image contains elements of Semi Massive, Matrix Strong and Massive texture according to the classification model.
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Individual minerals in the texture space

Massive

Matrix Strong

Matrix

Semi-Massive

Coarse
Blebby

Blebby

Vein

Disseminated
Strong

Disseminated

Weakly 
Disseminated

Points coloured by different mineral groups overlain with approximate boundaries with >50% probability of that texture existing


